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Uniform approximation in scattering by spheres 

H M Nussenzveigt 
NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 

Received 6 March 1987, in final form 29 June 1987 

Abstract. A new approximation to the scattering amplitude from an impenetrable sphere 
at short wavelengths is developed. In contrast with Fock’s theory, it remains valid at large 
scattering angles, where it can be matched with the usual semiclassical approximations. 
The accuracy, both for the magnitude and for the phase of the scattering amplitude, is 
improved by one or more orders of magnitude over previously known approximations. 
The approximation remains accurate even at size parameters below unity, bridging the gap 
between short and long wavelengths. Large-angle diffraction can be interpreted as a 
tunnelling effect. 

1. Introduction 

Uniform semiclassical approximations to the scattering of non-relativistic particles by 
central potentials having long-range tails that lead to forward diffraction peaks have 
been developed by Berry (1969). In contrast with transitional approximations, valid 
only very close to the forward direction and failing to merge smoothly with the ordinary 
semiclassical ( W K B )  formulae at larger angles, uniform approximations remain valid 
near to or far from the forward direction. The results depend on the form of the 
potential tail, because near-forward scattering is associated with large impact para- 
meters. 

Corresponding uniform approximations have not been developed, thus far, for the 
scattering by cutoff potentials, such as square wells or barriers. Closely related problems 
exist in the scattering of classical (e.g. acoustic or electromagnetic) waves by spherical 
particles. In view of the manifold practical applications of these models, as well as 
of their role as paradigms in scattering theory, this is a serious omission, which we 
address in the present work. 

The physical origin of near-forward scattering from such cutoff potentials is quite 
different from that found for potentials with tails because of the significant contribution 
from impact parameters very close to the ‘edges’ of the spherical scatterer, i.e. from 
the neighbourhood of grazing incidence. 

In a celebrated series of papers (see Fock 1965), Fock developed a theory of 
diffraction by curved edges. The results are expressed in terms of new diffraction 
integrals, known as Fock functions. By applying complex angular momentum theory 
to short-wavelength scattering by homogeneous spheres (Nussenzveig 1965, 1969), it 
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was shown that the near-forward scattering amplitude can be expressed in terms of 
generalised Fock functions, within an angular domain 

oseGy (1.1) 

= ( 2 / p p 3  p = ka (1.2) 

where f3 is the scattering angle and 

k being the wavenumber and a the radius of the sphere. 
Unfortunately, however, the Fock approximation is a transitional approximation. 

While it can yield accurate results within the domain (1.1) for p >> 1, it fails to bridge 
the gap between f3 - y and f3 >> y. This is the crucial region in which the transition to 
wide-angle scattering takes place. 

In practical applications of Mie scattering, where numerical results are obtained 
by summation of the exact partial-wave series, a major stumbling block is that the 
required computer time grows roughly linearly with p. Complex angular-momentum 
theory (Nussenzveig 1979) provides size-independent asymptotic approximations for 
/3 >> 1. However, since the angular distribution becomes increasingly peaked around 
the forward direction as p increases, it is essential to obtain accurate approximations 
to Fock-type scattering, valid over the broadest possible range of f3 and p. 

Other angular domains in acoustic and Mie scattering, away from the near-forward 
region, are of ‘Fock type’ (Nussenzveig 1969, 1979), providing additional incentive for 
the development of a uniform approximation. While several approaches to this end 
have been suggested (Ludwig 1966,1967,1969, Lewis et a1 1967, Borovikov and Kinber 
1974), none seems to have led to an explicit expression for the scattering amplitude. 

In this paper, to avoid inessential complications, we derive the uniform approxima- 
tion in connection with the simplest example, scalar scattering by a sphere with a 
Dirichlet boundary condition (quantum hard sphere or acoustic soft sphere, as in 
Nussenzveig (1965)). In spite of its simplicity, this problem has interesting applications 
(hard core in nuclear interactions, hard-sphere gas). It may also be regarded as the 
simplest model of diffraction by a three-dimensional obstacle, so that a thorough 
understanding of the solution is of fundamental interest in the theory of wave propa- 
gation. 

The uniform approximation has already been extended to a variety of other problems 
in acoustic scattering (rigid sphere) and electromagnetic scattering (perfectly conduct- 
ing sphere, general Mie scattering). The results, including detailed comparisons with 
the corresponding exact solutions, will be reported in a forthcoming series of papers 
(Nussenzveig and Wiscombe 1987). 

The basic idea is to take advantage of the freedom associated with complex angular 
momentum to derive rapidly convergent integral and series representations of the 
scattering amplitude. In § 2, we recall two basic representations, already derived in 
Nussenzveig (1965): an ‘inner’ representation, applicable around f3 = 0, and an ‘outer’ 
one, applicable up to f3 = 7. Both are exact, and we verify their equivalence by 
transforming one of them into the other one at intermediate scattering angles. This 
provides insight into the matching mechanism, which is very helpful for constructing 
the uniform approximation. 

The outer approximation (§  3)  is the sum of the W K B  expansion and surface wave 
contributions, associated with ‘creeping waves’ generated at grazing incidence. The 
W K B  expansion arises from a real saddle point in the complex angular-momentum 
plane. I t  is associated with classical paths, representing reflection from the surface of 



Uniform approximation in scattering by spheres 83 

the sphere. As 6 + 0, this approaches glancing reflection, and the whole approximation 
breaks down; the forward direction is a focal line. To improve the accuracy and 
domain of applicability of the outer approximation, we evaluate W K B  corrections up 
to second order. 

4, we derive a uniform asymptotic approximation for one term of the inner 
representation, the diffraction amplitude, which represents the blocking effect of the 
scatterer and depends only on its geometrical shape. In  the approximation of classical 
diffraction theory, it corresponds to the well known Airy pattern, associated with the 
forward diffraction peak. 

We consider next the crucial terms arising from near-edge incidence. The contribu- 
tion from rays travelling above the edge, but still interacting with the scatterer by 
tunnelling through the centrifugal barrier to the surface, is uniformly approximated 
in 0 5 .  

The near-edge contribution from rays incident below the edge ( §  6 )  is the hardest 
one to evaluate. For large enough 8, it yields the geometrical reflection saddle point, 
linking up with the W K B  contribution. One must follow up the 'birth' of this saddle 
point, and modify the path of integration when it is fully developed. The most suitable 
path is a hybrid between a steepest-descent path and a stationary-phase one, each of 
them yielding half of the W K B  contribution in the limit of large 8. The evaluation of 
this term completes the derivation of the uniform approximation. The corresponding 
expression for the total cross section is also obtained in § 6. 

In § 7 ,  we establish the connection with previously known results, including the 
Fock approximation. The resulting transitional approximations, though considerably 
less accurate than the uniform one, may be useful in the limit of small 8 and y. 

The physical interpretation of the results is discussed in § 8. We analyse the 
relationship with general semiclassical dynamics. The Leontovich-Fock physical pic- 
ture of edge effects, based on the concept of transverse diffusion (Malyuzhinets 1959), 
is inadequate. In complex angular-momentum theory, edge diffraction appears as a 
tunnelling effect. 

Finally, in 9 9, the accuracy and the domain of applicability of the uniform 
approximation are discussed. A few representative examples of numerical comparisons 
with the exact solution are given. The uniform approximation is found to be, typically, 
one to two orders of magnitude more accurate than previously known approximations. 
In other applications (Nussenzweig and Wiscombe 1987) still higher accuracy is found. 
In contrast with the Fock approximation, it enables us to make the transition to 
wide-angle scattering, so that, by combining it with the outer approximation, we can 
accurately reproduce both the modulus and the phase of the scattering amplitude for 
all values of 8. Furthermore, it remains reasonably accurate down to p -+, so that it 
also bridges the gap between short- and long-wavelength scattering. 

In 

2. Exact representations and matching 

The dimensionless total scattering amplitude for scalar plane-wave incidence on a 
sphere of radius a, with a Dirichlet boundary condition, is given by the partial-wave 
expansion 

F ( P ,  8 )  =m, e ) / a  

i "  
P I = O  

=- C ( / + + ) [ ~ - S , ( ~ ) ] P , ( C O S  e)  
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where P = ku is the size parameter, P,(cos e )  is the Legendre polynomial and 

S d P )  = - h ; 2 w h Y ( P )  (2.2) 

is the S function for the lth partial wave; h)””(P) are the spherical Hankel functions. 

( d a l d n ) l ( a 2 / 4 )  = 41F(P, e)lz (2.3) 

which approaches unity in the classical (geometrical optics) limit. The normalised 
total cross section, which we refer to as ‘extinction efficiency’, by analogy with light 
scattering nomenclature (van de Hulst 1957), is given by the optical theorem as 

The normalised differential cross section is 

Q ~ ~ ~ ( P )  = d p ) / ( 4  = 4  Im F(P, O ) / P .  

I ,  = p + 4 p 3  

(2.4) 

(2.5) 

When P >> 1,  an accurate evaluation of the partial-wave series (2.1) requires summing 

terms (Wiscombe 1980). The application of complex angular-momentum theory to 
obtain asymptotic approximations to F ( P ,  e )  is discussed in Nussenzveig (1965). 

For 0 < e S n, we may employ the exact representation (Nussenzveig 1965, equations 
(9.75) and (9.79)) 

F ( P ,  e )  = FLP, e )  + FAP, e )  o < e c r  (2.6) 

where the reflection amplitude Fr(p, 6 )  is given by 

Fr(P, e )  = -- S(A, P ) Q y 1 1 / 2 ( ~ ~ ~  0)A dh P I-@= ea; 

denoting the extension of the S function (2.2) to complex angular momentum A 
(physical values I + ; ) ;  H:‘.” are Hankel’s functions of the first and second kind, 
respectively. The functions Q y 1 2 , ) , 2 ( ~ ~ ~  6 )  are the travelling-wave Legendre functions, 
defined by (Nussenzveig 1965, equation ( C . l ) )  

Q,‘.~)(cos e)=;[P,(cos e )* (2 i / r )QU(cos  e)] (2.9) 
where P, and QY are Legendre functions of the first and second kind, respectively. 
The path of integration is shown in figure 1: 6.00 denotes a direction in the second 
quadrant of the A plane to the left of the curve k2,  where the zeros of H:”(p) are 
located. The last expression in (2.7) explicitly exhibits the regularity of the representa- 
tion at e = 77 (where Q:‘~,,,(cos 0 )  is singular). 

The surface-wave amplitude F, (P ,  e )  is given by 

(2.10) 

where A,, are the poles of S(A, P )  in the first quadrant of the A plane (Regge poles), 
which are the roots of 

H:’,,’(P)=o (2.11) 
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h, - a m  

Figurel. Paths of integration in the A plane. The zeros of H i " ( P )  are asymptotically 
located on the curves h ,  and h-,; thQse of H:''(p) on h, and h - 2 .  x x x , Regge poles. 
0, saddle point 1. r is the steepest-descent path through x and Z is the steepest-ascent 
one. The path r' is symmetrical about the origin. 

arranged in order of increasing [ A , ,  (figure l),  and r,, is the residue of S(A,P) at A,, 

rn = -HiyP)/fiY,,)(P) (2.12) 

where the dot denotes differentiation with respect to A. 

mation to (2.1), written in terms of PI( -cos e )  = (-l)'Pl(cos e) .  This yields 
The representation (2.6) may be derived by applying the standard Watson transfor- 

where the path C runs from coo-io to 0 and from 0 to co+iO,  encircling the poles of 
the integrand at A = I + i ( I = O ,  1,2 , .  . .). 

The asymptotic behaviour of the integrand as IA I + co is discussed in Nussenzveig 
(1965). We may deform C into the path I" shown in figure 1, leading to 

where F,, given by (2.10), arises from the residues at the poles crossed in the path 
deformation. 

The integrals associated with each of the two terms within square brackets (i.e. 1 
and S(A, p ) )  are separately convergent. The first one vanishes identically, because the 
integrand is odd ( P A - I / Z ( X )  = P-A-l,2(x)) and r' is taken to be symmetrical about the 
origin. In the second integral, we substitute the relation (Nussenzveig 1965, equation 
(C.5)) 

P,- l~2( -c0s  6) = i e-'"APA-,12(cos 0 )  -2i cos(~A)Q:'~,,,(cos e). 
The first term on the right-hand side again does not contribute, because it leads to an 
odd integrand (exp(-irh)S(A, p )  = exp(i.rrA)S(-A, P ) ) .  The last term yields the 
integral in (2.7), so that we recover (2.6). 
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For 0 < 0 < 7,  we may employ the alternative exact representation, manifestly 

(2.13) 

regular at e = 0 (Nussenzveig 1965, equation (9.78)), 

F ( P ,  e )  = Fd(P ,  e ) +  FQ, e )  + k ( ~ ,  e )  
where the diffraction amplitude F d ( P ,  e )  is given by 

o s e < T  

exp( 2i TA ) 
1 +exp(2irh)  

P A ~ l ~ 2 ( c o s  8 ) h  dh (2.14) 

which does not depend on S(A,  P ) .  
The edge amplitude F,(P,  0 )  in (2.13) is given by 

where the below-edge amplitude Fe- is given by 

F e - ( P ,  0 )  = -- S(A ,  P ) P A - 1 1 2 ( ~ ~ s  6 ) h  dh P I” ir 
(2.16) 

taken over a path of integration (typically represented by C’ in figure 1) that stays to 
the left of the poles A,,. The above-edge amplitude Fe+ is given by 

Finally, the surface-wave amplitude Fs(& e )  in (2.13) is given by 

(2.17) 

(2.18) 

The names we have given to the various amplitudes will later be justified by their 
physical interpretation. 

We now show explicitly the equivalence between the representations (2.6) and 
(2.13) at an arbitrary angle 0, O <  0 < T. The proof (which differs slightly from that 
given in Nussenzveig (1965)) also provides the mechanism that guarantees smooth 
matching between the uniform and outer approximations at sufficiently large 0 (cf 0 6). 

For this purpose, in (2.16) and (2.17), we employ the decomposition (cf (2.9)) 

(2.19) P,-,,,(cos e )  = Q‘,1!l,2(cos e ) +  Q ( ~ Z ! ~ , ~ ( C O S  e )  
leading to the corresponding decomposition 

(2.20) 

j = 1 , 2  (2.21) 

so that (2.15) may be rewritten as 

From (2.17), we have 

+‘([,I + [,)[1 - S ( h ,  P ) ] Q ‘ , ? , , 2 ( ~ ~ ~  O)h dh 
P 

(2.22) 

(2.23) 
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where the first (convergent) integral has been added and subtracted. I t  follows from 
Nussenzveig (1965, appendices A and C)  that the path of integration in the last term 
of (2.23) may be closed at infinity, yielding a residue series at the poles A,, (more 
precisely, as discussed in Nussenzveig (1965, § IV), one should take a sequence of 
paths passing halfway between the poles). Adding up (2.18), we get 

FF’(P,  e )  + Fs(/3, e )  = Q:2!I,Z(~~~ 0 ) h  dh 

According to Nussenzveig (1965, equation ( C S ) ) ,  the last term of (2.24) is identical 
to (2.10), so that 

Fi*’(P,  e ) +  Fs(/3, 0 )  = Qi2!I/2 (COS 8 ) h  dh + F,(P,  0) .  (2.25) 

On the other hand (cf (2.17)), 
. r - + X  

e )  = - J [ 1 - S(A ,  P)]Q:lll12(cos @ ) A  dh 
P P  

(2.26) 

where we have shifted the path of integration from the real axis to the path C” shown 
in figure 1 .  This is allowed, since the integrand is regular in between and decreases 
faster than exponentially at infinity. Taking into account (2.21) and (2.16), we get 

(2.27) 

where we have separated out the first (convergent) integral. 

equivalent to the path r’ from 6:co to - 6 ~ .  Thus, comparing with (2.7), we find 
The path of integration in the last term is the path C’+ C” in figure 1 ,  which is 

. r- ix 

(2.28) 

where we have shifted the path in the last integral to the path C”’ shown in figure 1 .  
From (2.22), (2.25) and (2.28), we obtain 

F ~ ( P ,  e )  + F s ( ~ 3  e )  = Fr(P, 0 )  + F ~ ( P ,  e )  

(2.29) 

where we have deformed C’ and C“ into paths running from *im to 0 along the 
imaginary axis and from 0 to P.  Changing A to - A  in the last integral and adding 
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exp(2irA) 
1 +exp(2 i rh)  

- 2  (2.30) 

According to Nussenzveig (1965, equations (C.4) and (C.5)) ,  the integrand of the 
last integral is identically zero, so that we recover (2.6), thus completing the proof that 
the two representations are equivalent for 0 < 0 < r. 

3. Outer approximation 

For large enough 6 (cf (3.9)),we may employ the ‘outer’ representation (2.6). We now 
derive asymptotic approximations to each of the two terms in (2.6) for large p. 

3.1. W K B  expansion of the reflection amplitude 

Taking 6 < r in the first representation (2.7), we set 

A = P  cos $ (3.1) 

and we employ the Debye asymptotic expansion (A1.lO) of H:‘”’(P) in (2.8), as well 
as the asymptotic expansion (A1.15) for Q:’! l /2(~~~ 6). The result is 

where 

a(+, e) = (+-;e) cos +-sin + (3.3) 

A( $, 6, P )  = sin +(cos $)”* 
8P cos + 

1 - d 2  -2d cot 0 -7 )+...I 
128p2 cos2 $ sin2 6 

+ (3.4) 

d = 2 cot $(l+;cot2 $) (3.5) 

and the path r; is the image of r‘ (figure 1) in the $ plane. The terms of order A - 2  
in the Debye asymptotic expansion of H:‘.”(P), which are not written down in (Al.lO), 
need not be included, because they are the same for H:”(P) and Hk2’(P), and they 
therefore cancel out in the ratio (2.8). Thus, (3.4) includes all corrections of order K 2 .  

$=;e (3.6) 

The exponent in (3.2) has a saddle point at 

corresponding, by (3.1), to 

1 = p  COS (;e) = k6 (3.7) 
where 6=  a cos (;e) is the impact parameter of an incident ray that, after geometrical 
reflection at the surface, emerges in the direction 0. The steepest-descent path through 
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the saddle point crosses the real axis at an angle of -+T both in the A plane (path I- 
in figure 1) and in the (I, plane. 

Applying the saddle-point method to (3.2), we get the W K B  expansion 

1 ( 2 + 3  cos2i6)  + 2p sin3 46 (2p sin3 ;e)’ 

+ 0[(2p sin3 ;e) - ’ ]  exp( -2ip sin i o )  (3.8) 1 
which arises from geometrical reflection at the surface, justifying the name given to 
this amplitude. The first-order W K B  correction agrees with that found by Keller et a1 
(1956) by direct application of the W K B  method. They also derived the second-order 
correction for 6 = r and (3.8) agrees with their result, but we have not found a previous 
evaluation for general 6. Since the first-order correction is purely imaginary, the 
contribution from the second-order one to the differential cross section is of equal 
importance, so that it must be included for consistency. 

It is clear by inspection of (3.8) that the domain of useful application of the W K B  

series as an asymptotic expansion for large p is 

6 3 2 y  (3.9) 

where y is defined by (1.2). This also follows from the breakdown of the Debye 
asymptotic expansions (A1.lO) employed in (3.2) when p -1 =0( y - I ) ,  with 1 given 
by (3.7). 

The asymptotic expansion (A1.15), also employed in (3.2), breaks down when 
r - 6 = O(A-”2) so that, from (3.7), one would get the additional requirement 7~ - 6 >> 
p-1’2. However, (3.8) is regular at 6 = 7 ~ .  As shown in Nussenzveig (1965, 0 IXC), an 
analysis based on the last representation in (2.7) and the uniform asymptotic expansion 
( A l . l l )  of Ph-112(-cos 6 )  confirms that (3.8) remains valid up to and including 6 = 7 ~ .  

3.2. Surface-wave amplitude 

As was shown in Nussenzveig (1965), only the lowest-order Regge poles A,,, located 
in the neighbourhood of A = p (figure l ) ,  give a significant contribution to (2.10). The 
asymptotic expansion of these roots of (2.11) for large /3 is (Streifer and Kodis 1964) 

A, = p + exp(ir /3)xny-‘  (3.10) 

where x, is the nth zero of the Airy function Ai(-x), 

Ai( -x,) = 0 n = 1 , 2 , .  . . . (3.11) 

The corresponding residues r,, given by (2.12), can be obtained from Schobe’s 
asymptotic expansions for the Hankel functions (Nussenzveig 1969, appendix A). The 
result is 

where 

(3.12) 

a ;  = Ai(-x,). (3.13) 
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In particular, x, = 2.338 10, x2 = 4.087 95, a ;  = 0.701 21, a i  = -0.803 11 (for tables of x, 
and a i ,  see Abramowitz and Stegun (1964, p 478)). The results (3.10) and (3.12) agree 
with those found by Senior (1965) (see also Sengupta (1969, equation (10.58)): the 
expression given in these references is for Ant-,,). 

Finally, employing the uniform approximation ( A l . l l )  for PA, , - ,  2 (  -cos e ) ,  (2.10) 
becomes 

(3.14) 

where ? ( e ,  A )  is defined by (A1.121, and A,, and r, are given by (3.10) and (3.12), 
respectively. 

In  particular, for n- -O>>p- ’ ,  (A1.14) goes over into (A1.15) (cf (2.19)) and the 
dominant terms in (3.14) become 

(3.15) 

in agreement with Nussenzveig (1965, equation (9.5)). The physical interpretation of 
the surface-wave contributions was discussed in Nussenzveig (1965): (3.15) shows the 
characteristic ‘creeping-wave’ decay with 8, becoming exponentially small for 6 >> y.  
It is also clear that the summation may be restricted to the lowest values of n. As 0 
decreases, approaching the lower bound (3.9) for the applicability of the outer approxi- 
mation, (3.14) can give a significant correction to (3.8), which must be taken into 
account. 

4. Uniform approximation: surface waves and diffraction 

4.1. Surface-wave amplitude 

By applying to (2.18) the same approximations that were applied to (2.10), we obtain 

where A,, and r,, are given by (3.10) and (3.12), respectively. 
The dominant terms in (4.1) for B > > P - ’  are similar to (3.15), except for the 

replacement of 8 by 27r - 8. Thus, p,(p, 0 )  represents the contribution from surface 
waves that have already taken at least half a turn around the sphere, which is 
exponentially small and can usually be neglected, except possibly at the lowest values 
of p for which the approximation is applicable. 

4.2. DifSractron amplitude 

The contribution (2.141, which depends on the scatterer only through its radius, may 
be regarded as defining ’diffraction scattering’ in complex angular-momentum theory. 

For a uniform asymptotic evaluation of the first integral in (2.14) when p >> 1, we 
substitute PA , ?(cos e )  by its uniform asymptotic expansion ( A l . l l ) ,  omitting the 
O(A-’) correction, which would give rise to a divergent integral at A = O  (where the 
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asymptotic expansion does not hold). The integrals that arise from the remaining 
terms are well known, yielding the result 

The first term of (4.2) differs from the well known Airy diffraction pattern only by the 
replacement of sin 0 by 8 (van de Hulst 1957, 00 8.31 and 12.32). At 6 =0,  the RHS 

of (4.2) becomes $p2,  which is the exact result. 
To evaluate the last integral in (2.14) for /3 >> 1, we again approximate PA-1,2(cos 0 )  

by ( A l . l l )  (with the O ( K 2 )  terms omitted). We then replace J o ( A e )  and Jl(Ae) by 
their power series expansions and integrate term by term. With the change of variable 
27rA =ix,  and employing the integral (Abramowitz and Stegun 1964, p 807) 

(2““)2”+2(1 - 1/22n+l)lB2n+2/ n = 0 , 1 , 2 ,  . . .  
4 ( n + l )  

lox d x  = 

where B, is the nth Bernoulli number, we find 

(4.3) 

which is a rapidly convergent series in the range of interest. For OZO, it suffices to 
keep the first few terms; for 0 = 0, the result is exact. 

Substituting (4.2) and (4.4) into (2.14), we finally obtain 

In particular, for 6 = 0, this reduces to the exact result 

~ ~ ( p ,  0) = i$( 1 + 1/12p2).  

5. Uniform approximation: above-edge amplitude 

In  terms of a ray picture, the integral (2.17) represents the contribution from incident 
rays with impact parameters A / k  3 a. Correspondingly, for A / k  >>a, the integrand 
decreases faster than exponentially (Nussenzveig 1969, figure 18), and the only sig- 
nificant contribution arises from the upper-edge domain (Nussenzveig 1969, equation 
(1.14)) 

A - p  = 7 - l ~  x = O ( l )  (5.1) 

From (2.8) and the uniform asymptotic expansions ( A l . l )  and (A1.2) of HY.”(P) 
justifying the name ‘above-edge amplitude’ (cf also van de Hulst 1957, 0 17.2). 

for A a p, we find 

1 - S ( A , P ) ~ ~ J , ( P ) / H : ” ( P ) = ~ X ~ ( ~ ~ ~ / ~ ) H + ( ~ ,  cp) (5.2) 
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where 

A = /3 cosh cp 

x=[ip(cp cosh cp-sinh ~ p ) ] ” ~  

and we have introduced the notation 

Ai( x ) - exp( i r / 6) U+( x, cp ) Ai’( x ) 
Ai( exp( 2 i r / 3 ) x )  + exp( - i r /6)a , (  x, cp)Ai‘( exp( 2 i r / 3 ) x )  H + ( x ,  CP) E 

with 

(5.3) 

(5.4) 

( 5 . 5 )  

L+( cp) [3( cp ~ 0 t h  cp - I)]-’ - ~ 0 t h ’  cp. (5.7) 

In  the coefficients of Ai and Ai’ in the numerator and denominator of ( 5 . 5 ) ,  we 
have neglected higher-order O(A-’) corrections (cf (Al.1)). The Ai‘ terms are correc- 
tions to the dominant Ai terms, so that (5.2) can be expanded in the form 

(++(x, (9) 

2.rrAi( x)Ai( exp(2in/3)x) 
1 - S(A, /?) = exp(ir /3)  

) 2  + 0(K3)] 
Ai‘( exp(2ir/3)x) 

where we have employed the Wronskian relation (cf (A1.6) and (A1.7)) 

W[Ai(z), Ai (exp( i2 i r /3)z) ]  = ( 2 r ) - ’  exp( T i r / 6 ) .  (5 .9 )  

Note that O(A-2) correction terms to the coefficients of Ai(x), Ai(exp(2ir/3)x) would 
cancel out in this expansion. However, we will keep the more accurate expression 
( 5 . 5 ) ,  rather than the expansion (5 .8 ) ,  in the uniform approximation. 

From the asymptotic expansion (A1.8) of Ai(z), we find that the dominant term 
in (5.8) for x >> 1 is 

1 - S(A, p )  - i exp( -$x3’7 x >> 1 (5.10) 

which decreases faster than exponentially with x (cf the beginning of this section). 
Taking into account the higher-order terms in (A1.8) and (A1.9), as well as (5.4), we 
find that ( 5 . 8 ) ,  for x >> 1, goes over into the Debye asymptotic expansion (the analogue 
of (A1.lO) for A > p ) ,  up to and including O(p- ’ )  correction terms. 

Similarly, from ( A l . l l )  and (5.3), 

P ~ - ~ , ~ ( c o s  e )  = s(e, p cosh cp) (5.11) 

where 9 ( e ,  A )  is defined by (A1.12). 
Substituting (5.2) and (5.1 1) into (2.17), we get the desired uniform approximation 

of Fe+@, e) .  For actual numerical evaluation, the most convenient integration variable 
is x, the natural scale variable, which is O( 1) in the edge domain. By differentiating 
(5.3) and (5.4) we find 

dA/dx = & / c p ( x ) .  (5.12) 
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To express (o in terms of x, we must invert (5.4), with x = 0 ( 1 ) .  The inversion is 

cp(x) = cpo[l - ~ c p : + ~ c p ~ - ~ c p : + O ( ~ : ) l  (5.13) 

performed in appendix 2, with the result 

where 

(oo(x) = YJX. (5.14) 

Since y is at most of order unity (for the lowest values of p )  and x = 0 ( 1 )  within the 
effective range of integration, (5.13) is rapidly convergent. For p >> 1, we have cpo<< 1 
within this range; to lowest order, 

A = p cosh (oo= p(1 +icpi) = p + y- 'x 

(cf (5.1)). 

tion of the above-edge amplitude 

Fe+(& 0 )  = -exp(-ir/6) 

The effective cutoff for the integral (cf (5.10)) is around x - 4  (cf (2.5)). 

Finally, substituting the above results into (2.17), we obtain the uniform approxima- 

H+(x, cp)P( 0, p cosh (o)cp-' cosh cph dx. (5.15) JOE 
6. Uniform approximation: below-edge amplitude 

In (2.16), we employ the uniform asymptotic expansion ( A l . l )  in the form (A1.3), 
leading to 

(6.1) S(A, p )  = - ~ y ] ( p ) / ~ ! , ' ) ( p )  = e x p ( - i r / 3 ) ~ - ( x ,  +) 

where 

A = p  COS II, 

x = exp(ir/3)[$(sin II, - II, cos $)l2l3 

and we have introduced the notation 

K ( x ,  $) = 

with 

Ai(x) -exp( - i r / 6 ) a - ( x ,  $)Ai'(x) 
Ai(exp( -2 i r /3 )x )  + exp(ir/6)a-(x,  $)Ai'(exp( -2ir /3)x)  

L-( $) = [3( $ cot IC, - 1)]-'  + cot2 4. 

The analogue of (5.8) for (2.8) is the expansion 

U-(& $) 
2rAi(x)Ai(exp( -2 i r /3 )x )  

S(A, p )  = exp(- i r /3)  

) * + O( A -.)I Ai'(exp( -2 i r /3 )x )  

(6.4) 

(6.7) 
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where we have employed (5.9). Also, from (A1.8), we find as the dominant term of 
(6.7), for x >> 1, 

S(A, p )  - -i exp(-$x3 ’1 x >> 1 (6.8) 

and, taking into account (6.3) and higher-order terms in (A1.8) and (A1.9), we find 
that (6.7), for x >> 1, goes over into the result given by the Debye asymptotic expansion 
(Al.lO), up to and including O(p- ’ )  terms, the same ones that were employed in (3.4). 

Similarly, from ( A l . l l )  and (6.2), 
P ~ - ~ , ~ ( c o s  e) = w e ,  p cos $1. (6.9) 

Since PA-,,’(l) = 1, the integrand of (2.16) at 0 = O  is dominated by (6.8), so that, 
starting from x = 0 (equivalent to A = p, by (6.2)), the direction of fastest decrease in 
the x plane is along the positive real axis. This is the reason for the choice of phase 
in (6.3) (cf Nussenzveig 1969, equation (4.66)). From (6.2) and (6.3), we find 

dA/dx = i&/$(x). (6.10) 

The inversion of (6.3) to express $ in terms of x for x = 0 ( 1 )  is performed in 

$(x) = +&$:+i&$:+&$:+o(431 (6.11) 

appendix 2 ,  yielding the analogues of (5.13) and (5.14), 

where 

$o(x)= exp(-ir/6)y&. (6.12) 
In particular, for p >> 1 and x = 0 ( 1 ) ,  we have I$o(x)l<c. 1, so that A = p  cos $ = 

A = p + e x p ( 2 i r / 3 ) y - ’ x  x = O( 1). (6.13) 
Thus in the A plane, the path C’ of steepest decrease (at e = 0) leaves the real axis at 
an angle of 2 ~ / 3 ,  as shown in figure 1. Note, however, that (6.8) holds for x >> 1, and 
that A = p is not a saddle point. 

In  a suitable neighbourhood of the forward direction, Os e s eo, where Bo will be 
determined below, this is a good choice for the path of integration. Substituting (6.1), 
(6.9) and (6.10) into (2.16), we obtain 

p(1 -;&I, i.e. 

Fe-@,  e )  = - e x p ( - i ~ / 3 )  H-(x, $).We, p cos $)$I-’ COS $J;; dx o s e s e ,  

(6.14) 
where c, the effective cutoff, is essentially the same as that for (5.15) for small enough 

What happens when 0 increases? By (2.19) and (A1.15), we have, for 0 Im A >> 1, 

i: 
e. 

exp( - h e )  
(27rA sin 8)”’ 

P ~ - ~ , ~ ( C O S  e)  - Q:‘!,,,(cos e)  =exp(-i.ir/4) (6.15) 

which increases exponentially as A moves up along C’ in figure 1. Taking into account 
(6.81, we see that, for 1x13 1, the integrand of (6.14) is dominated by the exponential 
factor 

(6.16) exp[@(x, p, e)i=exp[-$x3’*-ipe cos $ ( X I ]  

where $(x) is given by (6.11). This approximation may be applied for 

e 
2Y 

1x13 1 - / X I 3  1. (6.17) 
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According to (6.16), for 8 b 2y, if we integrate (6.14) along the real x axis, the integrand 
has a peak at x = ( f 3 / 4 ~ ) ~ ,  with a width of order ( 0 / 2 ~ ) ” ~ ,  so that the cutoff c would 
have to take on larger and larger values if we were to apply (6.14) beyond 8 - 27. 

On the other hand, in (6.16), 

a q x ,  p, e ) / a ~ = J ; ; ( e / l ~ , - 2 )  (6.18) 

so that for complex x we find a saddle point at 

$= $ ( a )  = ; e  (6.19) 

i.e. by (6.3), at 

X = exp(ir /3)T T =  [@(sin $ e  -+e   COS^^)]^'^. (6.20) 

In particular, for f3 << 1, (6.20) yields 

T =  ( e / 2 ~ ) ~ [ 1 - ~ ( $ e ) ~ + o ( e ~ ) ]  e<< 1. (6.21) 

By comparing (6.19) with (3.6), we see that this is just the geometrical reflection saddle 
point of 0 3. 

In view of (6.17) and (6.21), we can say that the saddle point appears only for 

e 3 2 y  (6.22) 

which is the same as (3.9), the condition for applicability of the outer approximation. 

a’@(?, p, e ) / a x ’  = 32’3 exp(5in/6)y(sin f e  -io cos $e)2’3/[(if3)’ sin if31 
From (6.18) and (6.20), we obtain 

- (2y/f3) e x p ( 5 i ~ / 6 )  e<< 1 (6.23) 

so that the steepest-descent path in the neighbourhood of 2 is given by 

x - 2 = exp( in / l2 )u  I m u = O  (6.24) 

which, by (6.131, corresponds to the path r in the A plane, meeting the real axis at X 
at an angle of 3n /4 .  

through 1 that 
crosses the real axis at an angle of an. For @ b 2 y ,  the path C’ associated with (6.14) 
would have to ‘climb up over the ridge’ across X before ‘coming down on the lowlands’ 
on the other side (leading to the peaked behaviour discussed following (6.17)), so that 
it would not be a good path. This suggests taking O 0 s 2 y  in (6.14). 

From (6.15) and (2.20), we see that the difficulties found for e b 2 y  affect only 
F;!(P, e ) ;  by (A1.15), Qy1,,2 (cos e )  decays exponentially for Im A > 0, so that the 
analogue of (6.14) for FL?(p, 0 )  can still be employed for t9> Bo: 

~ L z ’ ( p ,  e)  = - e x p ( - i ~ / 3 )  

Figure 1 also shows, with a dotted line, the steepest-ascent path 

~ ( x ,  $)g’“)(e, p COS $) 

e 2 eo (6.25) 

where 9’pc2)(0, A )  is defined by (A1.14). 
Since FLY(@, e )  must eventually give rise to the W K B  approximation at larger e (cf 

(2.27)), a good path for Bo should go through X before joining up with (5.15) at 
A = p. Thus for FL?((P, e ) ,  6 > Bo, instead of integrating over C ’  in figure 1, we first 
go from p to X along the real-A axis, which is equivalent to taking a stationary phase 

J1: 
x +-’ cos I/J& dx 



96 H M Nussenzveig 

path, and then we go into the upper half-plane along the steepest-descent path r from 
i. The equivalent path in the x plane follows from (6.20) and (6.24). The result is 

(6.26) FLY(@, e)  = F;!-)(p,  e )  + FL!!(p, e )  e >  eo 
where 

I., 

6) = -exp(i.n/6) H - ( e x p ( i ~ / 3 ) ? ,  $ ) . P ( ” ( O ,  p cos $) J o’ 

x 6-l cos 6d-t d t  

with i defined by (6.20), 9“’(0 ,  A )  by (A1.14), and 

$ ( t )  = +(x = exp(i.rr/3)t). 

(6.27) 

(6.28) 

With x = exp(iv/3)t, by (6.2) and (6.3), (6.27) represents the integral from p to h 
along the real-A axis (stationary phase path). Along this path (cf (6,12)), $ is real 
and (cf (6.1)) IH-I = IS(& p)I  = 1. 

The other term of (6.26) is 

where 

z (  U )  = ,f + exp(i.rr/ 12) U $ ( U ,  = * ( z )  

(6.29) 

(6.30) 

so that (6.29) represents the integral along the steepest-descent path (6.24), correspond- 
ing to the path r from into the upper half-plane in figure 1. 

Along this path, by (6.23), the integrand decreases like exp( - u 2 / p 2 ) ,  where 

p = [2(a20(x, p, e)/ax’)-’]’/*- ( e / # / 2  e<< 1 (6.31) 

is the range of the saddle point. Thus the effective cutoff for the integral, which we 
have taken as the upper limit in (6.29), is 

ug = c’p (6.32) 

where c’ is a numerical constant. 
Since the integrands of (6.14), (6.25) and (6.29) decrease faster than exponentially, 

the effective cutoff constants c and c‘ (cf (6.32)) are numbers of order unity, the choice 
of which depends on the accuracy that one is aiming at; to reduce computing time, 
one wants to pick the lowest possible values. We must also choose eo, and the choices 
of these parameters must be such that the representations (6.14), and (6.25) and (6.26) 
(with Fe- given by (2.20)) match smoothly at 6 = eo. 

The difference between these representations is that, in the x plane, the integral 
associated with FL?(p, 0 )  is taken from x = 0 to c in (6.14), whereas in (6.26) it is 
taken first from x = O  to .f, corresponding to (6.27), and then from x =,f to ,f+ 
exp(iv/  12)u0, corresponding to (6.29). For smooth matching, by Cauchy’s theorem, 
the integral joining the endpoints of these two alternative paths must be negligible, to 
the desired order of accuracy, at 0 = Bo. A convenient choice is 

e o =  Y c = 4  CI = 3.5. (6.33) 

These values were employed in the numerical tests discussed in 0 9. 
The least rapidly convergent term in the uniform approximation is the definite 

integral (6.27) along the stationary phase path. Since the range of the stationary phase 
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point is also given by (6.31), the dominant contributions to (6.27) arise from a 
neighbourhood (extending over a few times the range) of the upper limit and from 
the lower limit of integration (Bleistein and Handelsman 1975). The contribution from 
the lower limit is cancelled out by the corresponding contribution from (5.15), so that, 
for large 8, one half of the W K B  result (3.8) arises from the stationary-phase contribution 
in (6.27) and the other half from the saddle-point contribution in (6.29). 

Since all terms included in (3.2) are limiting forms of corresponding terms included 
in the uniform approximation, smooth matching with the outer approximation at large 
8 is guaranteed, following the lines of the matching mechanism discussed in § 2. This 
completes the proof that the approximation developed in $ 9  4-6 is indeed uniform. 

The extinction efficiency, according to (2.4) and (2.13), is given by 

exp( 2i T A , )  
Q e X @ ) = 2 + - - 7 I m  z A n r n  

6PZ 8.rr P ( n  l + e x p ( 2 i ~ A , )  

H+(x, 9)q-l  cosh q&dx (6.34) 

where the first two terms arise from the diffraction amplitude (4.6), the next one from 
the surface-wave amplitude (4.1), and the last two from the above-edge and below-edge 
amplitudes (5.15) and (6.14) (where we have extended the upper limit to infinity). 

7. The Fock approximation 

Simplified versions of the uniform approximation may be useful, particularly for very 
large p and very small 8, or when less accurate results suffice. We now discuss them, 
establishing contact with previously known results, including the Fock approximation. 
These are all transitional approximations, holding only in narrow angular domains, 
that lead to severe patching problems when one tries to extend them to larger angles 
(cf § 9). 

Since the main contribution to (5.15) arises from x = O ( l ) ,  one has cp<< 1 in the 
relevant portion of the domain of integration when y<< 1. Thus, one may employ the 
power series expansion of cosh cp, together with (5.13), yielding 

(7.1) 
where the last term is small under the above conditions. Consequently, from (A1.12), 

pecosh ~p = pe+ e x / y + & y e x 2 +  . . . 

(7.2) 

Similarly, from (5.6) and (5.7), 

(++(x, 9) = -A e x p ( - i ~ / 6 )  y4  (7.3) 
so that, from (5.2) and (5.8), 

(7.4) 
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Finally, under the same conditions, (5.13) and (5.14) yield 
cp - I  cosh cpdx= y - ' [ l+Ay 'x+0(y4x2) ] .  

Substituting (7.2), (7.4) and (7.5) into (5.15), we obtain 

exp( -i7r/6) ( 8 ) I "  1: Ai( x )  d x  
sin 8 Ai( e x p ( 2 i ~ / 3 ) x )  F,+(P, 6 ) -  - 

Y 

x [ ( i + + y 2 x ) ~ o ( p e +  e x i Y ) - & y e x 2 J 1 ( P e + e x / y ) ] .  

Applying equivalent approximations to (6.14), we get 

(7.5) 

(7.6) 

exp(- ia /6)(  6 )"210x d x  Ai(x) 
sin 8 Ai(exp( -2i71./3)x) F,-(P, 0)  = - 

Y 

x [(I  + A  e x p ( 2 i . r r / 3 ) y Z x ) ~ , ( ~ 8 + ( e / y )  e x p ( 2 i ~ / 3 ) x )  

+&re e x p ( i r r / 3 ) x ' ~ ~ ( ~ ~ + ( e / y )  e x p ( 2 i ~ / 3 ) x ) ]  o s  e s  eo. (7.7) 

From (2.15), (7.6) and (7.7), we find 

x"Ai(x) 
J ,  (PO + ex/ y)  d x  

x"Ai(x) 

5, Ai(exp( 2i71./3)x) 9 m , n ( P ,  e)  = exp(i.rr/3) 

5, Ai(exp( -2i71./3)x) 
+exp[i(2m + l)rr/3] 

x J,,(pe + ( e /  y )  e x p ( 2 i ~ / 3 ) x )  d x  (7.9) 

are generalised Fock functions of 'reflection coefficient type' (Logan 1959, Logan and 
Yee 1962, Nussenzveig 1969, equation (4.64)). 

In appendix 3, we reduce the above expressions to generalised Fock functions, 
defined by (Nussenzveig 1969, equation (4.67)) 

The result is 

(7.11) 

which agrees with the impenetrable sphere limit of Nussenzveig (1969, equation (4.68)). 
In (7.11), we have taken Bo= y, as in (6.33). 
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For !3 << y ,  we can expand F,,,(P, 0 )  into powers of e /  y (Nussenzveig 1969, equation 
(4.74)) and (7.11) becomes 

which agrees with the impenetrable sphere limit of Nussenzveig (1969, equation (4.75)) 
to the order of accuracy computed there. In (7.12), 

Ai(x) 
x”’ dx lox Ai(exp(2ir/3)x) M,,, 9,,,o(p, 0 )  = exp( i r /3)  

Ai( x)  
x”’ d x  I: Ai(exp(-2ir/3)x) 

+exp[i(2m+ 1).rr/3] (7.13) 

which is equivalent to the definition of these coefficients given by Wu (1956). In 
particular (Lisle et a1 1985) 

M O =  1.255 124 56 exp(i.rr13) M I  = 0.532 2907 exp(2ir/3) 

M z  = 0.067 717. (7.14) 

From (2.4), (4.6) and (7.12), the extinction efficiency becomes 

Q,J P 1 = 2 + 2 Re[ MO Y’ + A M 1  Y + (-,%M, + &o) Y + 0 ( Y 11 (7.15) 

where the surface-wave contribution (4.1) to (2.13) has been neglected, as it is exponen- 
tially small for y << 1. The term & in (7.15) differs by a factor $ from the corresponding 
term in Wu (1956). 

y<‘ 1 

8. Physical interpretation 

8.1. Relationship with semiclassical dynamics 

The ‘crude semiclassical approximation’ to F ( P ,  0 )  for our problem is given by (Berry 
1969) 

where @ ( A )  is the classical deflection function associated with the impact parameter 
A /  k, given by the well known billiard-ball expression 

which is plotted in figure 2. The function S(A) is the classical action along the 
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t 

0 P 
A 

Figure 2. Classical deflection function (equation (8 .2) ) .  

corresponding (geometrical reflection) path, given by 

S (  A )  = 2[A C O S - ' ( A / ~ )  - ( p z  - A - 4 4 1  - A @ (  A )  O C A S @  (8.3) 

where the expression within square brackets is the W K B  phase shift (cf (2.8) and 
(Al.10)). Finally, in (8.1), i is the stationary phase point (3.7). Thus, from (8.2), 

@'(i) = -2(p sin ; e ) - ' .  (8.4) 

The usual semiclassical singularity in forward scattering by potentials having 
long-range tails arises from the combined effect, as 8 + 0, of the axial focusing singular- 
ity from the factor (sin e)-"*  in (8.1) with the vanishing of O'( i )  as 1 + CO, corresponding 
to the small deflections at large impact parameters (Berry 1969). 

+ p, 
where @(I) has a vertical tangent (figure 2). The corresponding singularity of (8.4) 
as 8 + 0  cancels out the divergence arising from (sin e)- ' ' *  in (8.11, yielding the first 
term of (3.8), which is regular at 8 = 0. 

Nevertheless, there is still a semiclassical singularity as 8+0, but it is a subtler 
effect that appears in the first-order correction to (8. l ) ,  which contains terms propor- 
tional to (Nussenzveig 1965, equation (6.12)) [ @ " ( i ) ] 2 / l @ ' ( i ) / 3 ,  @"'(i)/[@'(,i)]2. These 
terms give rise to the characteristic ( p  sin3 $ e ) - '  singularity in (3.8). 

In the present case, however, by (3.7), forward scattering is associated with 

The effective 'potential' for radial motion associated with A is (figure 3) 

which is the sum of the hard core with the centrifugal potential in the semiclassical 
approximation, i.e. including the Langer modification (Berry and Mount 1972). 

The critical angular momentum A, = p is associated with grazing incident rays. For 
A > A,, as shown in figure 3, we find a turning point at 

r , = A / k  A > A , .  (8.6) 
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Figure3. The effective 'potential' Ue,,(A, r )  (equation (8.5))  for A > A c  ( A ) ,  A = A ,  ( B )  and 
A < A, (c), where A' = p. ro = turning point for A > A,. 

The corresponding WKB barrier penetration factor up to the surface of the sphere is 

(8.7) 

It can readily be verified that (8.7) is identical to the exponential factor in (5.10), 
taking into account (5.3) and (5.4). Thus the above-edge integrand in (5.15) is weighted 
by the barrier penetration factor associated with tunnelling of the above-edge rays 
through the centrifugal barrier to the surface of the sphere. This is the origin of the 
rapid decay of the integrand. 

While the uniform approximation is not expressed in terms of action functions 
along classical paths (Berry 1969), we see that the edge contribution is related to 
complex (tunnelling) paths that are complex extensions of classical paths, rather like 
instantons. 

8.2. Physical interpretation of the edge contributions 

Fock's own interpretation of his theory of diffraction by a curved edge (Fock 1965, 
chs 5 and 9)  is in terms of transverse diffusion, a concept introduced by Leontovich 
(1944). 

In  geometrical optics, as is well known (Sommerfeld 19541, there are prescriptions 
for transport of the amplitude along rays, but no restrictions on its behaviour along 
transverse directions, so that discontinuities and other singularities are allowed. Leon- 
tovich and Fock interpret diffraction as a process of transverse diffusion of the amplitude 
along wave fronts. 

This interpretation is based upon a local approximation to the reduced wave equation 
in a neighbourhood of the edge of a curved surface, in 'ray coordinates'. The relevant 
rays are the diffracted rays introduced by Keller in his geometrical theory of diffraction 
(Keller 1958). Figure 4 shows a tangentially incident ray AT and the corresponding 
diffracted ray TT'P leaving the surface tangentially at T' to reach the observation point 
P. The ray coordinates are the arc fit = 7 described along the surface and the length 
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A 

Figure 4. The ray coordinates ( r ~ ,  c)  of an observation point P. 

fi, 7 + T P= of the diffracted ray path. In the coordinates 

x = b< Y = d ( i -  V I Z  (8.8) 

where b and d are suitably defined constants, the reduced wave equation in a neighbour- 
hood of T takes the form 

ia$/ax = (-a*/ay‘-y)$(x, y ) .  (8.9) 

According to the Leontovich-Fock interpretation, (8.9) describes transverse 
diffusion of the amplitude along wave fronts, leading to diffraction. Actually, in view 
of the imaginary coefficient, this interpretation is inadequate. 

The proper analogy is with Schrodinger’s equation, and (8.9) can be readily 
interpreted in our problem in terms of complex angular-momentum theory. Time 
evolution is replaced by evolution in x, i.e. along a ray, and y describes transverse 
behaviour, playing the role of a radial coordinate: y = 0 at the surface (which is a 
caustic of diffracted rays) and  y > O  above it. Thus (8.9) is analogous to the time- 
dependent radial Schrodinger equation for motion in a linear potential barrier, corre- 
sponding to motion near the top  of the centrifugal barrier in figure 3, where it can be 
approximated by a linear potential. 

The ‘stationary’ solutions are Airy functions, and we can build the ‘time-dependent’ 
solution as a wavepacket of stationary solutions. By requiring it to satisfy the boundary 
condition at the surface, as well as the excitation condition associated with the incident 
plane wave, we obtain the Fock-type functions. We may regard this as a higher- 
dimensional extension of the joining-up problem across a turning point in the one- 
dimensional W K B  approximation (Berry and Mount 1972). 

As was pointed out following (8.7), the function H+(x, cp) in (5.15) is essentially 
equivalent, for x >> 1, to the centrifugal barrier penetration factor at the associated 
value of the impact parameter. Indeed, for arbitrary x, it corresponds to the uniform 
approximation (Berry and  Mount 1972) to this penetration factor. 

While the below-edge amplitude arises from the strong reflection effects near the 
barrier top, its complex angular momentum representation (6.14) can also be interpreted 
as a tunnelling amplitude. The rapid decay in (6.8) is the below-edge counterpart of 
(5.10): H-(x, $) and H+(x ,  cp) behave in a nearly symmetrical way for x >> 1. Since 4 
is the angle of incidence associated with the impact parameter b = A /  k (cf (6.2)), we 
can also interpret H-(x, 4 )  as a uniform barrier penetration factor for the complex 
angle of incidence 4 (see (6.13)). Thus the full edge amplitude (2.15) can be interpreted 
as a sum over complex paths, associated with tunnelling near the top of the centrifugal 
barrier (Nussenzveig and Winscombe 1987). 
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Diffraction, in the classical Huygens-Fresnel-Kirchhoff theory, is pictured as a 
disturbance of wave propagation due to the removal of a portion of the wavefronts 
by the blocking effect of the obstacle. This bulk blocking effect leads to the Airy 
diffraction pattern, which is uniformly represented here by (4.5). The classical diffrac- 
tion amplitude is indeed dominant at very small diffraction angles, 8 i p - ’ .  However, 
classical diffraction theory completely fails to describe what happens at larger angles 
of diffraction, 8 b y. 

Large-angle diffraction around the curved edge of the sphere is described by the 
edge amplitude Fe(@, e), which, as we have just seen, is a tunnelling amplitude. For 
8 >> y ,  the remnants of tunnelling appear in the form of surface waves. Indeed (cf 
(2.25)), the surface-wave amplitude is generated by a combination of above-edge and  
below-edge terms. According to the geometrical theory of diffraction (Keller 1958), 
‘creeping waves’ are generated by tangentially incident rays. We now see that, in a 
more complete wave picture, they are actually launched by tunnelling which takes 
place within the entire edge domain. 

This interpretation of diffraction as tunnelling into ‘classically forbidden’ regions 
extends to more general curved surfaces, with the centrifugal barrier replaced by more 
general inertial barriers in suitable curvilinear coordinates (Beck and Nussenzveig 
1960). 

9. Discussion 

According to 9 3, the outer approximation is expected to become accurate only for 
8 >> y, where (cf Q 7) the Fock approximation can no  longer be applied. Thus, the 
domains of validity of these two approximations d o  not overlap: they cannot be joined 
to yield accurate results for all 8. 

The uniform approximation must also break down at large enough 8, since the 
asymptotic expansions on which it is based lose their validity as 8 +  T. However, its 
domain of applicability certainly extends to 8 >> y, allowing us to join it up  with the 
outer approximation. This leads to accurate expressions for F ( p ,  8 )  over the whole 
range O s 8 s . i r .  

The residue series appearing in these expressions are rapidly convergent: only their 
first few terms need to be retained. The integrands of (5.151, (6.14), (6.25) and (6.29) 
are all smooth and of faster than exponential decrease, so that one can cut them off 
as indicated in (6.33) (for (6.25), in view of the exponential decay of PP(?’, an even 
lower cutoff, c = 3, may be taken). 

There remains the definite integral (6.27), which behaves like a Fresnel integral 
near its upper limit t .  One can estimate from (6.16) and (6.21) that the integrand of 
(6.27) goes through - $ ( 8 / 2 y l 3  cycles of oscillation within the range of integration. 
This number increases rapidly for 8 >> y. Thus, although contributions from beyond 
the range of the stationary phase point tend to cancel out by destructive interference, 
it is convenient to shift over to the outer approximation as soon as this can be done 
without loss of accuracy. The W K B  approximation should be rejoined by the time the 
integrand has gone through one or two cycles of oscillation, which (for large enough 
p )  occurs around 6 - 4.5 y. 

In figure 5, the uniform, outer and Fock approximations to l F ( p ,  e ) /  and arg F ( p ,  8 )  
for p = 10 are compared with the exact partial-wave solution (in view of the rapid 
variation of arg F, we have plotted cos(arg F + 2 p  sin +8+  T), which, by (3.8), is better 
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Figures. ( a )  I F ( p ,  e ) /  for p = 10: exact ( A )  compared with uniform ( B ) ,  outer (C)  and 
Fock ( D )  approximations. ( b )  Same for cos(arg F + 2 P  sin $ e +  a). 

behaved). The magnitudes of the relative errors associated with the various approxima- 
tions are plotted in figure 6. The numerical evaluation of the partial-wave solution 
was performed by applying techniques similar to those developed by Wiscombe (1980). 

The relative error of the uniform approximation to IF1 starts out at =s3 parts per 
million at  0 = 0" and it stays below O.0lo/~ for f3 < 70". At the crossover with the relative 
error curve for the outer approximation, which here occurs at f3 - 3.7 y, we find the 
maximum error of the combined approximation, about 0.3%. The relative errors for 
the Fock approximation are one to two orders of magnitude larger than those for the 
uniform approximation up  to f3 - 1.57, and they grow very rapidly beyond this range. 
The results for the phase of F are similar. 

0 2 0  4 0  
811 

0" 90' 1800 
e 

00 90' 1800 e 
Figure6. ( a )  Magnitudes of the relative errors of the approximations plotted in figure 
5 ( a ) ;  ( b )  same for figure 5 ( b ) .  
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The small oscillations of IF( in the outer approximation result from the interference 
between the contributions of reflected waves ( W K B )  and surface waves. We see in figure 
5 that they are just the continuation of the oscillations found in the uniform approxima- 
tion, which arise mainly from the edge amplitude. This agrees with our interpretation 
of large-angle diffraction in terms of tunnelling (§  8). 

We have not plotted what might be called the 'classical' approximation, 

~ , , ( p ,  e) = i J , (pe) /e  - +  exp(-2ip sin +e) (9.1) 

the sum of the classical diffraction amplitude (van de Hulst 1957) and the W K B  reflection 
amplitude. This would be a very poor approximation, yielding a displaced diffraction 
pattern, with much stronger contrast between maxima and minima. Naturally, the 
classical diffraction amplitude is not expected to be applicable at large 8. 

The magnitudes of the relative errors of the uniform and Fock approximations to 
the extinction efficiency, given by (6.34) and (7.15), respectively, are plotted in figure 
7 for 46 p 6 10. The relative error of the uniform approximation is -1.3 parts per 
million at /3 = 10, rising monotonically as /3 decreases, but still remaining below 1% 
at p =:. For the Fock approximation, even though O(p-2 )  corrections are included 
in (7.15), the relative error remains about one order of magnitude larger. 

\ i: 

Size parameter ,  p Size  p a r a m e t e r ,  p 

Figure 7. ( a )  Extinction efficiency Qex,(p), f o r f s  p 5 10: exact ( A )  compared with uniform 
(B) and Fock ( C ) .  ( b )  Magnitudes of the relative errors of the approximations plotted in 
( a ) .  

More detailed numerical comparisons (Nussenzveig and Wiscombe 1987) confirm 
that the combined uniform and outer approximation remains accurate all the way 
down to p - 1, bridging the gap between short- and long-wavelength scattering. The 
accuracy is, typically, one to two orders of magnitude better than that of the Fock 
approximation within its range of applicability. The maximum error decreases from 
a few per cent for p - 1 to 60.3% for p B 10 and ~ 0 . 0 2 %  for p b 100. 

The maximum error is not a good measure of the accuracy because it tends to 
occur in the backward hemisphere where the differential cross section is small. In the 
region that yields most of the contribution to the cross section, typical errors are one 
to two orders of magnitude below the maximum error. The phase accuracy is even 
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better than that for IFI. For large values of p, the relative error of the uniform 
approximation becomes so small that it is hard to estimate, since this would 
require pushing the accuracy of partial-wave summations beyond its usual limits. For 
practical purposes, the uniform approximation becomes indistinguishable from the 
exact solution. 

We conclude that complex angular-momentum theory provides a rather thorough 
understanding of the scattering by an impenetrable sphere. In particular, large-angle 
diffraction can be interpreted as a tunnelling effect. 
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Appendix 1. Asymptotic expansions of special functions 

Olver's uniform asymptotic expansions of Hankel's functions H:'.*'(p) for large I A  I 
are (Olver 1974) 

+exp(*2in/3) A 5/3 c y) (A1.1) 
Ai'( exp( *2ir/3)A 

k 20 

where Ai denotes the Airy function, and, depending on the relative magnitudes of A 
and p, one may choose either one of the representations 

3.5"' = cp - tanh cp (A1.2) 

$( -5)3'2 = tan II, - II, (A1.3) 

the branches being such that 5 is real for real A and z > 0. The coefficients ak and b, 
are given by Olver (1974). In  particular, 

ao(5)  = 1 (A1.4) 

z- '  = A / P  =cosh cp 

2-I = Alp  =cos * 

(A1.5) 

We have (Abramowitz and Stegun 1964, p 446) 

Ai(exp(+Zir/3)x) = 4 exp(*ir/3)[Ai(x) T i  Bi(x)] (A1.6) 

with the Wronskian 

W[Ai(x), Bi(x)] = l / r .  (A1.7) 

The uniform asymptotic expansion of J h ( p )  = i [ H : " ( p )  + H:"(p)] follows from ( A l . l )  
and (A1.6). 
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For lA”3[/ >> 1 in ( A l . l ) ,  we can employ the asymptotic expansions of Ai(z) and 
Ai’(z) (Abramowitz and Stegun 1964, p 448): 

(A1.8) e ~ p ( - + z ~ ’ ~ )  5 
Ai( z) == 2 ~ ; ; ~ ~ / ~  ( 1 - G  + o ( z - ” ) )  

Ai’(z) = -- 

/ z /  >> 1 larg zl< 7r 

z 1 / 4  exp( -;z3’’)( 1 - = + O ( Z - ~ ) )  7 Iz/ >> 1 larg z /  < 7r (A1.9) 
247r 

and (Al . l )  reduces to Debye’s asymptotic expansion (Abramowitz and Stegun 1964, 
D 366) 

(Al .  
i 

x 17- (1 +$ cot’ IL )  + O(A-’) ( 8p sin I,9 

for (A1.3), with a corresponding result for (A1.2). 

given by (Olver 1974) 
The Szego-Olver uniform asymptotic expansion of P A - I I Z ( ~ ~ ~  e)  for large lA is 

( A l . l l )  

The corresponding uniform asymptotic expansions for Q?L’;,~(COS e) (cf (2.9)) are 

(Al .  13) Q:~:~,),~(cos e)  == 9(I,2J( e, A )  

where 

-L( - cot 0) Hi2-”(A8) + O( A . 
1 6 ~  e I 

Note that 9“’ is associated with Hb2’ and 9“’ with Hb”. 
For lhle >> 1, (A1.13) goes over into (Robin 1958) 

(A1.14) 

x ( 1-- e) +O(”i ) ]  IAle >> 1. (Al.15) 

Appendix 2. Inversion of (5.4) and (6.3) 

Employing the power series expansions of cosh cp and sinh cp, (5.4) may be rewritten as 

cp coshcp-sinhcp=2cp’/3!+4cp5/5!+6cp7/7!+ ...=fcpi( x) (A2.1) 
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where 

% ( X )  = y J x .  (A2.2) 

To lowest order, (A2.1) yields ~ ( x )  = cpo(x), suggesting a solution of the form 

p(x)  = q o ( l +  c,&+ c*cp:+ . . .). (A2.3) 

Substituting (A2.3) into (A2.1) and identifying the coefficients of similar powers of 
(po, one determines the unknown expansion coefficients c, ,  c 2 , .  . . , leading to (5.13). 

sin $ - Cc, cos $ = 2$’/3! -4$’/5!+6$’/7! - , , . = f$ i (x )  (A2.4) 

Similarly, (6.3) may be rewritten as 

where 

$b0(x)= e x p ( - i ~ / 6 ) y d x .  (A2.5) 

We look for the solution in the form 

4 ( x )  = $ O ( l +  d,&+ d,&+ . . .). (A2.6) 

Substituting into (A2.4) and identifying, we find d , ,  d z ,  . . . , leading to (6.1 1). 

Appendix 3. Reduction to generalised Fock functions 

It follows from (7.9) and Nussenzveig (1969, equation (C.3)) that 

$o,o(P, @)+fY2~I ,O(P ,  0) = -(Y/e)J,(Pe) 

+(Y/~)[FO,,(P,  ~)+;Y*FI,l(P, e ) ] .  
On the other hand, we have 

(A3.1) 

Substituting this into (7.9), with tn = 2, n = 1, and integrating by parts, we obtain (cf 
(7.10)) 

(A3.2) W P ,  0) = 2 ( ~ / e ) 9 , , ~ ( ~ ,  ~ ) - ( Y / ~ F ~ , ~ ( P ,  e)  
where we have also employed the relationship 

Ai(x) exp( 7 i7r/6) 
A i ( e x p ( i 2 i ~ / 3 ) x ) )  = -27r Ai2 (exp(*2 i~ /3 )x )  

which follows from the Wronskian relation (5.9). 
Substituting (A3.1) and (A3.2) into (7.8), we get (7.11). 
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